GE Multilin SPM Synchronous Motor Protection Control Relay 40A201A0.000
GE Multilin SPM Synchronous Motor Protection Control Relay 40A201A0.000
The SPM Synchronous Motor Protection and Control relay controls starting, synchronizing, and protection of
collector-ring and brushless type synchronous motors.
The SPM control functions for starting synchronous motors include accurate sensing of motor speed and rotor
angle, allowing the unit to apply excitation at optimum speed and angle. This permits closer matching of the
motor to the load. Optimum application of excitation also reduces power system disturbance, which occurs
when the motor goes through a complete slip cycle with the field energized. In addition, the SPM can take
advantage of the extended stall time of a reduced voltage start. It also responds with the proper application of
excitation in the event that the motor synchronizes on reluctance torque.
The SPM provides the functions necessary to protect the motor during startup and in the event of asynchronous
operation. During startup and restarting, the SPM prevents overheating of the cage winding. To protect
against asynchronous operation, the motor power factor is monitored. Two modes of pull-out protection can trip
the motor if resynchronization does not occur after a programmed time delay. Motor run time and the number
and type of trips are recorded.
The SPM has an optional power factor regulator containing five adjustable setpoints that can be changed while
the motor is running for convenient regulator tune-up.
A backlit LCD display and keys allow user configurable setting ranges to meet many applications. The unit
comes in a compact S1 drawout case.
The SPM can be applied as part of a complete synchronous motor controller. This consists of four parts. A
main device switches the motor on and off the power system. Multifunction digital relays (such as the GE Multilin
469 Motor Management Relay) provide stator protection. DC field protection and control are provided by
the SPM. The field contactor and field discharge resistor completes the control assembly.
The DC portion of the synchronous motor (rotor assembly) is protected and controlled using a drawout microprocessor
based multifunction relay. The relay is adaptable to either collector-ring or brushless type synchronous
motors. Protection features include all of the following:
• Cage winding and stall protection during start
• Lockout feature to protect a hot rotor after an incomplete start
• Incomplete sequence trip due to failed acceleration
• Automatic acceleration time adjustment for reduced voltage starting
• Power factor (pull-out) trip with auto resynchronizing feature
• Loss of DC field current trip
• Loss of DC field voltage trip
• Field winding overtemperature trip
After a successful start, the relay automatically applies the DC field to the rotor at a prescribed slip and slip
angle to minimize mechanical stresses to the shaft as well as minimizes possible electrical transients to the
power system. This is achieved by a dedicated output to close the DC field contactor. The relay is also capable
of reluctance torque synchronizing (collector-ring machines only).
A dedicated output is provided in the relay to enable the loading of the motor following the DC field application
and unloading of the motor following a trip and/or loss of synchronization (pole slipping).
Control of an SCR type excitation system by means of an analog output to maintain power factor (PF regulation)
is available as an option.
Delivery:
Warranty:
All our products are covered by our own warranty.
Payment method:
Quick Quote: Receive price and availability today!
Replacing an electrical equipment unit in a plant is a complex task that requires careful planning and execution to ensure safety and minimize downtime. Here is a general step-by-step guide on how to replace electrical equipment in a plant:
Pre-Planning:
Safety Precautions:
Shutdown Procedures:
Disconnection:
Removal of Existing Equipment:
Installation of New Equipment:
Testing and Commissioning:
Documentation:
Training:
Startup:
Throughout the process, it’s important to work closely with a team that includes electrical engineers, technicians, and maintenance staff. Communication is key to a successful equipment replacement. Additionally, always adhere to local electrical codes and standards to ensure compliance and safety. If the task is beyond the expertise of in-house staff, consider hiring a professional contractor experienced in industrial electrical work.
Obtaining industrial automation programming software typically involves the following steps:
Identify Your Needs:
Research Software Options:
Contact Equipment Manufacturers:
Purchase or Download:
Academic or Evaluation Versions:
Open Source Options:
Licensing:
Training and Support:
Legal and Compliance:
Installation and Setup:
Here are some common ways to obtain industrial automation programming software:
Remember to keep your software updated to benefit from the latest features and security patches. Also, ensure that you have the necessary backup and recovery procedures in place to protect your programming work.
All new products and surplus products of the industrial intelligence industry, as well as the discontinued products of the original manufacturers. We are not an authorized distributor or representative of any of the above manufacturers (except for brand authorization). The trademarks, brand names and brands appearing in this agreement are the property of their respective manufacturers.
COPYRIGHT© 2003-2024 Copyrighted
Phone(WeChat/Whatsapp)
+086-18144100983
No 1134 Jimei North Road, Jimei District
Hong Kong Office:
Guan Tang District, Hong Kong,